5740 measured reflections

 $R_{\rm int} = 0.032$ 

1979 independent reflections

1721 reflections with  $I > 2\sigma(I)$ 

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 2-Cyanoguinolin-1-ium hydrogen sulfate

#### Wan-Sin Loh, # Madhukar Hemamalini and Hoong-Kun Fun\*§

X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 27 September 2010; accepted 28 September 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.051; wR factor = 0.154; data-to-parameter ratio = 10.6.

The title salt,  $C_{10}H_7N_2^+$ ·HSO<sub>4</sub><sup>-</sup>, is formed by the transfer of a proton from H<sub>2</sub>SO<sub>4</sub> to the N atom of 2-cyanoquinoline during crystallization. The quinoline ring system is approximately planar with a maximum deviation of 0.013 (3) Å. In the crystal, the cations are linked to the anions via intermolecular N-H···O, O-H···O and C-H···O hydrogen bonds, forming a layered network.

#### **Related literature**

For background to and the biological activity of quinoline derivatives, see: Loh et al. (2010a,b); Sasaki et al. (1998); Reux et al. (2009); Morimoto et al. (1991); Michael (1997); Markees et al. (1970); Campbell et al. (1988). For related structures, see: Loh et al. (2010a,b). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987).



#### **Experimental**

#### Crystal data

| $C_{10}H_7N_2^+ \cdot HSO_4^-$   |
|----------------------------------|
| $M_r = 252.24$                   |
| Triclinic, P1                    |
| a = 7.2154 (3) Å                 |
| b = 8.2334 (4) Å                 |
| c = 9.9985 (4)  Å                |
| $\alpha = 110.622 \ (2)^{\circ}$ |
| $\beta = 90.982 \ (3)^{\circ}$   |
|                                  |

 $\gamma = 110.791 \ (2)^{\circ}$ V = 512.82 (4) Å<sup>3</sup> Z = 2Mo  $K\alpha$  radiation  $\mu = 0.32 \text{ mm}^{-1}$ T = 100 K0.34  $\times$  0.19  $\times$  0.12 mm

‡ Thomson Reuters ResearcherID: C-7581-2009. § Thomson Reuters ResearcherID: A-3561-2009.

#### Data collection

Bruker SMART APEXII CCD

diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009)  $T_{\min} = 0.900, T_{\max} = 0.963$ 

#### Refinement

**T** 1 1 - 4

| $R[F^2 > 2\sigma(F^2)] = 0.051$ | 186 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.154$               | All H-atom parameters refined                              |
| S = 1.11                        | $\Delta \rho_{\rm max} = 0.82 \text{ e } \text{\AA}^{-3}$  |
| 1979 reflections                | $\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$ |

| Table I       |          |     |     |
|---------------|----------|-----|-----|
| Hydrogen-bond | geometry | (Å, | °). |

| $D - H \cdots A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D-H                                                      | $H \cdot \cdot \cdot A$                                  | $D \cdots A$                                                  | $D - H \cdots A$                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------|
| $N1 - H1N1 \cdots O1^{i}  04 - H1O4 \cdots O2^{ii}  C2 - H2A \cdots O2^{iii}  C5 - H5A \cdots O4^{iv}  C7 - H7A \cdots O3^{iv}  C7 - $ | 0.98 (5)<br>0.67 (5)<br>0.91 (4)<br>0.98 (3)<br>0.94 (4) | 1.71 (5)<br>1.97 (5)<br>2.53 (4)<br>2.52 (3)<br>2.41 (4) | 2.669 (3)<br>2.641 (3)<br>3.320 (4)<br>3.475 (4)<br>3.338 (4) | 169 (4)<br>176 (7)<br>145 (3)<br>166 (3)<br>167 (3) |
| 0=10402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.22 (4)                                                 | 2.59 (4)                                                 | 5.509 (4)                                                     | 150 (5)                                             |

Symmetry codes: (i) x, y - 1, z; (ii) -x, -y + 2, -z + 1; (iii) -x, -y + 1, -z + 1; (iv) x + 1, y, z + 1; (v) - x + 1, -y + 2, -z + 1.

Data collection: APEX2 (Bruker, 2009): cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL thanks USM for the award of a USM fellowship and HM thanks USM for the award of a post doctoral fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5657).

#### References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA
- Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031-1035.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Loh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o2357.
- Loh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66. o2396.
- Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324-326
- Michael, J. P. (1997). Nat. Prod. Rep. 14, 605-608.
- Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202-203.
- Reux, B., Nevalainen, T., Raitio, K. H. & Koskinen, A. M. P. (2009). Bioorg. Med. Chem. 17, 4441-4447.
- Sasaki, K., Tsurumori, A. & Hirota, T. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 3851-3856.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2010). E66, o2709 [doi:10.1107/S160053681003878X]

## 2-Cyanoquinolin-1-ium hydrogen sulfate

## W.-S. Loh, M. Hemamalini and H.-K. Fun

#### Comment

Recently, hydrogen-bonding patterns involving quinoline and its derivatives with organic acid have been investigated (Loh *at al.*, 2010*a,b*). Syntheses of the quinoline derivatives were discussed earlier (Sasaki *et al.*, 1998; Reux *et al.*, 2009). Quinolines and their derivatives are very important compounds because of their wide occurrence in natural products (Morimoto *et al.*, 1991; Michael, 1997) and biologically active compounds (Markees *et al.*, 1970; Campbell *et al.*, 1988). Heterocyclic molecules containing cyano group are useful as drug intermediates. Herein we report the synthesis of 2-cyanoquinolin-1-ium hydrogen sulfate.

The asymmetric unit of the title compound (Fig. 1) consists of one 2-cyanoquinolin-1-ium cation (C1–C10/N1/N2) and one hydrogen sulfate anion (O1–O4/S1). One proton is transferred from the hydroxyl group of hydrogen sulfate to the atom N1 of 2-cyanoquinoline during the crystallization, resulting in the formation of salt. The quinoline ring system (C1–C9/N1) is approximately planar with a maximum deviation of 0.013 (3) Å at atom C6. Bond lengths (Allen *et al.*, 1987) and angles are within the normal ranges and are comparable to the related structures (Loh *et al.*, 2010*a*,*b*).

In the crystal (Fig. 2), the cations are linked by the anions *via* intermolecular N1—H1N1···O1, O4—H1O4···O2, C2—H2A···O2, C5—H5A···O4, C7—H7A···O3 and C8—H8A···O2 hydrogen bonds (Table 1) into a two-dimensional networks.

#### Experimental

A few drops of sulfuric acid were added to a hot methanol solution (20 ml) of quinoline-2-carbonitrile (39 mg, Aldrich) which had been warmed over a magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly to room temperature. Colourless blocks of (I) appeared after a few days.

#### Refinement

All H atoms were located from a difference Fourier map and refined freely with the bond lengths of C–H being 0.91 (3) to 0.99 (3) Å, N–H being 0.98 (5) Å and O–H being 0.67 (5) Å.

## **Figures**



Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids for non-H atoms.



Fig. 2. The crystal structure of (I), viewed along the c axis.

# 2-Cyanoquinolin-1-ium hydrogen sulfate

| $C_{10}H_7N_2^+ HSO_4^-$         | Z = 2                                          |
|----------------------------------|------------------------------------------------|
| $M_r = 252.24$                   | F(000) = 260                                   |
| Triclinic, PT                    | $D_{\rm x} = 1.634 {\rm ~Mg} {\rm ~m}^{-3}$    |
| Hall symbol: -P 1                | Mo K $\alpha$ radiation, $\lambda = 0.71073$ Å |
| a = 7.2154 (3) Å                 | Cell parameters from 2998 reflections          |
| b = 8.2334 (4)  Å                | $\theta = 2.2 - 27.6^{\circ}$                  |
| c = 9.9985 (4) Å                 | $\mu = 0.32 \text{ mm}^{-1}$                   |
| $\alpha = 110.622 \ (2)^{\circ}$ | T = 100  K                                     |
| $\beta = 90.982 \ (3)^{\circ}$   | Block, colourless                              |
| $\gamma = 110.791 \ (2)^{\circ}$ | $0.34 \times 0.19 \times 0.12 \text{ mm}$      |
| $V = 512.82 (4) \text{ Å}^3$     |                                                |

## Data collection

| Bruker SMART APEXII CCD<br>diffractometer                            | 1979 independent reflections                                              |
|----------------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                             | 1721 reflections with $I > 2\sigma(I)$                                    |
| graphite                                                             | $R_{\rm int} = 0.032$                                                     |
| $\phi$ and $\omega$ scans                                            | $\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$ |
| Absorption correction: multi-scan<br>( <i>SADABS</i> ; Bruker, 2009) | $h = -8 \rightarrow 6$                                                    |
| $T_{\min} = 0.900, \ T_{\max} = 0.963$                               | $k = -10 \rightarrow 10$                                                  |
| 5740 measured reflections                                            | $l = -12 \rightarrow 12$                                                  |

## Refinement

| Refinement on $F^2$             | Primary atom site location: structure-invariant direct methods                      |
|---------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                                |
| $R[F^2 > 2\sigma(F^2)] = 0.051$ | Hydrogen site location: inferred from neighbouring sites                            |
| $wR(F^2) = 0.154$               | All H-atom parameters refined                                                       |
| <i>S</i> = 1.11                 | $w = 1/[\sigma^2(F_o^2) + (0.0884P)^2 + 0.5522P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| 1979 reflections                | $(\Delta/\sigma)_{\rm max} < 0.001$                                                 |
| 186 parameters                  | $\Delta \rho_{\rm max} = 0.82 \ {\rm e} \ {\rm \AA}^{-3}$                           |

0 restraints

```
\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}
```

## Special details

**Experimental**. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|                 | x                     | У            | Z           | $U_{\rm iso}*/U_{\rm eq}$ |
|-----------------|-----------------------|--------------|-------------|---------------------------|
| S1              | 0.15454 (10)          | 0.99553 (10) | 0.33365 (7) | 0.0141 (3)                |
| 01              | 0.3450 (3)            | 1.0495 (3)   | 0.4227 (2)  | 0.0216 (5)                |
| 02              | 0.0561 (3)            | 1.1258 (3)   | 0.3966 (2)  | 0.0184 (5)                |
| O3              | 0.1678 (3)            | 0.9584 (3)   | 0.1832 (2)  | 0.0199 (5)                |
| O4              | 0.0149 (3)            | 0.8001 (3)   | 0.3345 (3)  | 0.0213 (5)                |
| N1              | 0.5709 (4)            | 0.3044 (3)   | 0.6749 (3)  | 0.0153 (5)                |
| N2              | 0.7421 (5)            | 0.4421 (4)   | 0.4025 (3)  | 0.0341 (8)                |
| C1              | 0.5498 (4)            | 0.2853 (4)   | 0.8046 (3)  | 0.0146 (6)                |
| C2              | 0.3903 (4)            | 0.1311 (4)   | 0.8119 (3)  | 0.0171 (6)                |
| C3              | 0.3736 (5)            | 0.1152 (4)   | 0.9439 (3)  | 0.0176 (6)                |
| C4              | 0.5161 (4)            | 0.2496 (4)   | 1.0697 (3)  | 0.0178 (7)                |
| C5              | 0.6693 (4)            | 0.3999 (4)   | 1.0632 (3)  | 0.0157 (6)                |
| C6              | 0.6915 (4)            | 0.4236 (4)   | 0.9298 (3)  | 0.0151 (6)                |
| C7              | 0.8438 (4)            | 0.5775 (4)   | 0.9151 (3)  | 0.0161 (6)                |
| C8              | 0.8587 (4)            | 0.5909 (4)   | 0.7818 (3)  | 0.0164 (6)                |
| C9              | 0.7188 (4)            | 0.4485 (4)   | 0.6622 (3)  | 0.0171 (6)                |
| C10             | 0.7297 (5)            | 0.4459 (4)   | 0.5172 (3)  | 0.0224 (7)                |
| H2A             | 0.305 (5)             | 0.040 (5)    | 0.730 (4)   | 0.017 (8)*                |
| H3A             | 0.266 (5)             | 0.008 (5)    | 0.947 (4)   | 0.018 (8)*                |
| H4A             | 0.493 (5)             | 0.226 (5)    | 1.157 (4)   | 0.025 (9)*                |
| H5A             | 0.767 (4)             | 0.498 (4)    | 1.148 (3)   | 0.008 (7)*                |
| H7A             | 0.933 (5)             | 0.672 (5)    | 0.999 (4)   | 0.016 (8)*                |
| H8A             | 0.964 (5)             | 0.696 (5)    | 0.767 (4)   | 0.015 (8)*                |
| H1N1            | 0.474 (6)             | 0.211 (6)    | 0.589 (5)   | 0.045 (11)*               |
| H1O4            | -0.005 (7)            | 0.814 (7)    | 0.402 (5)   | 0.040 (14)*               |
|                 |                       |              |             |                           |
| 4               |                       | 2            |             |                           |
| Atomic displace | amont naramators ( 14 | ()           |             |                           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

Atomic displacement parameters  $(Å^2)$ 

| $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
|----------|----------|----------|----------|----------|----------|
|          |          |          |          |          |          |

# supplementary materials

| S1  | 0.0155 (4)  | 0.0150 (4)  | 0.0056 (4)  | 0.0016 (3)   | -0.0029 (3)  | 0.0015 (3)  |
|-----|-------------|-------------|-------------|--------------|--------------|-------------|
| 01  | 0.0213 (11) | 0.0246 (12) | 0.0092 (10) | 0.0065 (9)   | -0.0058 (8)  | -0.0016 (9) |
| O2  | 0.0221 (11) | 0.0209 (11) | 0.0133 (10) | 0.0093 (9)   | 0.0018 (8)   | 0.0069 (9)  |
| O3  | 0.0229 (11) | 0.0231 (12) | 0.0058 (10) | 0.0025 (9)   | 0.0009 (8)   | 0.0031 (9)  |
| O4  | 0.0286 (13) | 0.0204 (12) | 0.0079 (11) | 0.0045 (10)  | 0.0005 (9)   | 0.0028 (10) |
| N1  | 0.0176 (13) | 0.0158 (13) | 0.0088 (12) | 0.0046 (10)  | -0.0020 (10) | 0.0025 (10) |
| N2  | 0.0415 (18) | 0.0289 (16) | 0.0134 (14) | -0.0059 (14) | -0.0036 (12) | 0.0070 (12) |
| C1  | 0.0183 (15) | 0.0194 (15) | 0.0080 (13) | 0.0100 (12)  | 0.0014 (11)  | 0.0047 (12) |
| C2  | 0.0155 (14) | 0.0167 (15) | 0.0130 (15) | 0.0041 (12)  | -0.0030 (12) | 0.0013 (12) |
| C3  | 0.0175 (15) | 0.0185 (16) | 0.0148 (15) | 0.0047 (13)  | -0.0003 (12) | 0.0066 (13) |
| C4  | 0.0218 (16) | 0.0229 (16) | 0.0113 (15) | 0.0116 (13)  | 0.0031 (12)  | 0.0063 (13) |
| C5  | 0.0183 (15) | 0.0199 (15) | 0.0079 (14) | 0.0094 (13)  | -0.0005 (11) | 0.0023 (12) |
| C6  | 0.0159 (14) | 0.0145 (15) | 0.0122 (14) | 0.0051 (12)  | -0.0019 (11) | 0.0030 (12) |
| C7  | 0.0197 (15) | 0.0157 (15) | 0.0093 (14) | 0.0073 (12)  | -0.0016 (12) | 0.0004 (12) |
| C8  | 0.0154 (14) | 0.0162 (15) | 0.0134 (14) | 0.0033 (12)  | -0.0013 (11) | 0.0039 (12) |
| C9  | 0.0209 (15) | 0.0182 (15) | 0.0113 (14) | 0.0069 (12)  | 0.0007 (11)  | 0.0055 (12) |
| C10 | 0.0259 (17) | 0.0183 (16) | 0.0134 (16) | 0.0001 (13)  | -0.0026 (12) | 0.0040 (13) |

Geometric parameters (Å, °)

| S1—O3      | 1.438 (2)   | C3—C4     | 1.425 (4)  |
|------------|-------------|-----------|------------|
| S1—01      | 1.457 (2)   | С3—НЗА    | 0.96 (3)   |
| S1—O2      | 1.460 (2)   | C4—C5     | 1.358 (4)  |
| S1—O4      | 1.570 (2)   | C4—H4A    | 0.96 (4)   |
| O4—H1O4    | 0.67 (5)    | C5—C6     | 1.418 (4)  |
| N1-C9      | 1.333 (4)   | C5—H5A    | 0.98 (3)   |
| N1-C1      | 1.365 (4)   | C6—C7     | 1.408 (4)  |
| N1—H1N1    | 0.98 (5)    | С7—С8     | 1.378 (4)  |
| N2-C10     | 1.142 (4)   | С7—Н7А    | 0.95 (4)   |
| C1—C2      | 1.404 (4)   | C8—C9     | 1.398 (4)  |
| C1—C6      | 1.426 (4)   | C8—H8A    | 0.99 (3)   |
| C2—C3      | 1.375 (4)   | C9—C10    | 1.446 (4)  |
| C2—H2A     | 0.91 (3)    |           |            |
| O3—S1—O1   | 113.75 (13) | C5—C4—C3  | 120.9 (3)  |
| O3—S1—O2   | 113.56 (12) | C5—C4—H4A | 124 (2)    |
| O1—S1—O2   | 111.77 (12) | C3—C4—H4A | 115 (2)    |
| O3—S1—O4   | 104.10 (13) | C4—C5—C6  | 120.2 (3)  |
| 01—S1—O4   | 105.98 (13) | C4—C5—H5A | 123.1 (17) |
| O2—S1—O4   | 106.81 (13) | C6—C5—H5A | 116.7 (17) |
| S1         | 108 (4)     | C7—C6—C5  | 123.5 (3)  |
| C9—N1—C1   | 122.0 (2)   | C7—C6—C1  | 118.5 (3)  |
| C9—N1—H1N1 | 119 (3)     | C5—C6—C1  | 118.0 (3)  |
| C1—N1—H1N1 | 119 (3)     | C8—C7—C6  | 120.6 (3)  |
| N1—C1—C2   | 119.6 (3)   | C8—C7—H7A | 121 (2)    |
| N1-C1-C6   | 118.8 (3)   | С6—С7—Н7А | 118 (2)    |
| C2—C1—C6   | 121.7 (3)   | С7—С8—С9  | 118.4 (3)  |
| C3—C2—C1   | 118.2 (3)   | C7—C8—H8A | 122.8 (19) |
| С3—С2—Н2А  | 121 (2)     | C9—C8—H8A | 118.8 (19) |
| C1—C2—H2A  | 121 (2)     | N1—C9—C8  | 121.7 (3)  |

| 101 0 (0) | 211 62 612                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 121.0 (3) | NIC9C10                                                                                                                                      | 116.2 (3)                                                                                                                                                                                                                                                                                                                      |
| 117 (2)   | C8—C9—C10                                                                                                                                    | 122.1 (3)                                                                                                                                                                                                                                                                                                                      |
| 121 (2)   | N2-C10-C9                                                                                                                                    | 178.2 (4)                                                                                                                                                                                                                                                                                                                      |
| 179.6 (3) | C2-C1-C6-C7                                                                                                                                  | -178.0 (3)                                                                                                                                                                                                                                                                                                                     |
| -0.5 (4)  | N1—C1—C6—C5                                                                                                                                  | -179.0 (2)                                                                                                                                                                                                                                                                                                                     |
| 179.7 (3) | C2-C1-C6-C5                                                                                                                                  | 1.0 (4)                                                                                                                                                                                                                                                                                                                        |
| -0.3 (4)  | C5—C6—C7—C8                                                                                                                                  | 179.2 (3)                                                                                                                                                                                                                                                                                                                      |
| -1.1 (5)  | C1—C6—C7—C8                                                                                                                                  | -1.9 (4)                                                                                                                                                                                                                                                                                                                       |
| 1.8 (5)   | C6—C7—C8—C9                                                                                                                                  | 0.2 (4)                                                                                                                                                                                                                                                                                                                        |
| -1.1 (4)  | C1—N1—C9—C8                                                                                                                                  | -1.4 (4)                                                                                                                                                                                                                                                                                                                       |
| 178.7 (3) | C1—N1—C9—C10                                                                                                                                 | 176.8 (3)                                                                                                                                                                                                                                                                                                                      |
| -0.3 (4)  | C7—C8—C9—N1                                                                                                                                  | 1.5 (5)                                                                                                                                                                                                                                                                                                                        |
| 2.0 (4)   | C7—C8—C9—C10                                                                                                                                 | -176.6 (3)                                                                                                                                                                                                                                                                                                                     |
|           | 121.0 (3) $117 (2)$ $121 (2)$ $179.6 (3)$ $-0.5 (4)$ $179.7 (3)$ $-0.3 (4)$ $-1.1 (5)$ $1.8 (5)$ $-1.1 (4)$ $178.7 (3)$ $-0.3 (4)$ $2.0 (4)$ | 121.0 (3) $N1-C9-C10$ $117 (2)$ $C8-C9-C10$ $121 (2)$ $N2-C10-C9$ $179.6 (3)$ $C2-C1-C6-C7$ $-0.5 (4)$ $N1-C1-C6-C5$ $179.7 (3)$ $C2-C1-C6-C5$ $-0.3 (4)$ $C5-C6-C7-C8$ $-1.1 (5)$ $C1-C6-C7-C8$ $1.8 (5)$ $C6-C7-C8-C9$ $-1.1 (4)$ $C1-N1-C9-C8$ $178.7 (3)$ $C1-N1-C9-C10$ $-0.3 (4)$ $C7-C8-C9-N1$ $2.0 (4)$ $C7-C8-C9-C10$ |

# Hydrogen-bond geometry (Å, °)

| D—H···A                     | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$                          | D—H··· $A$ |
|-----------------------------|-------------|--------------|---------------------------------------|------------|
| N1—H1N1···O1 <sup>i</sup>   | 0.98 (5)    | 1.71 (5)     | 2.669 (3)                             | 169 (4)    |
| O4—H1O4···O2 <sup>ii</sup>  | 0.67 (5)    | 1.97 (5)     | 2.641 (3)                             | 176 (7)    |
| C2—H2A····O2 <sup>iii</sup> | 0.91 (4)    | 2.53 (4)     | 3.320 (4)                             | 145 (3)    |
| C5—H5A····O4 <sup>iv</sup>  | 0.98 (3)    | 2.52 (3)     | 3.475 (4)                             | 166 (3)    |
| C7—H7A····O3 <sup>iv</sup>  | 0.94 (4)    | 2.41 (4)     | 3.338 (4)                             | 167 (3)    |
| C8—H8A···O2 <sup>v</sup>    | 0.99 (4)    | 2.59 (4)     | 3.309 (4)                             | 130 (3)    |
|                             | . 1 (***)   | 1 ( ) 11 11  | · · · · · · · · · · · · · · · · · · · |            |

Symmetry codes: (i) x, y-1, z; (ii) -x, -y+2, -z+1; (iii) -x, -y+1, -z+1; (iv) x+1, y, z+1; (v) -x+1, -y+2, -z+1.





Fig. 2